Serveur d'exploration Glutathion S-transférase végétale

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effects of co-cropping on soybean growth and stress response in lead-polluted soils.

Identifieur interne : 000170 ( Main/Exploration ); précédent : 000169; suivant : 000171

Effects of co-cropping on soybean growth and stress response in lead-polluted soils.

Auteurs : Carolina Vergara Cid [Argentine] ; María L. Pignata [Argentine] ; Judith H. Rodriguez [Argentine]

Source :

RBID : pubmed:31927384

Descripteurs français

English descriptors

Abstract

Phytoremediation by co-cropping may be a promising approach to produce safe crops while remediating the soil. However, the effects of plant interaction, especially stress response, remain unclear. The aims of this study were to investigate the effect of co-cropping on plant growth, stress response and lead (Pb) uptake in soybean and Tagetes minuta, and to assess the feasibility of agricultural production in Pb-polluted soils. A pot experiment was conducted to study the effect of co-cropping vs monocrop at three soil Pb concentrations. The following parameters were analyzed: biomass, Pb content in plants, and stress response indicators (chlorophylls, proteins, sugars, malondialdehyde, glutathione S-transferase activity, carotenes and antioxidant power). Results showed that in co-cropping, both species were benefited in polluted soils, since biomass and stress response were improved. T. minuta reduced adverse effects of Pb on soybean by improving grain quality and even survival in polluted soils, where soybean in monocrop grew only up to early vegetative stages. This effect was related to a 50% reduction in lipid peroxidation for soybean in co-cropping along with a sharp increase in the antioxidant response. In addition, co-cropping enhanced Pb accumulation in T. minuta (45% higher), as well as content of chlorophylls and carotenes (66% and 42% of increment, respectively) and glutathione S-transferase activity (two times higher) in the highly polluted soil. Our results showed that rhizosphere interactions can help enhance tolerance to Pb toxicity in both species, allowing soybean production in highly polluted soils without posing health risk from grain consumption.

DOI: 10.1016/j.chemosphere.2020.125833
PubMed: 31927384


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Effects of co-cropping on soybean growth and stress response in lead-polluted soils.</title>
<author>
<name sortKey="Vergara Cid, Carolina" sort="Vergara Cid, Carolina" uniqKey="Vergara Cid C" first="Carolina" last="Vergara Cid">Carolina Vergara Cid</name>
<affiliation wicri:level="1">
<nlm:affiliation>Instituto Multidisciplinario de Biología Vegetal, Área Contaminación y Bioindicadores, Universidad Nacional de Córdoba, CONICET, FCEFyN, Av. Vélez Sársfield, 1611, X5016CGA, Córdoba, Argentina. Electronic address: cvergaracid@imbiv.unc.edu.ar.</nlm:affiliation>
<country xml:lang="fr">Argentine</country>
<wicri:regionArea>Instituto Multidisciplinario de Biología Vegetal, Área Contaminación y Bioindicadores, Universidad Nacional de Córdoba, CONICET, FCEFyN, Av. Vélez Sársfield, 1611, X5016CGA, Córdoba</wicri:regionArea>
<wicri:noRegion>Córdoba</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pignata, Maria L" sort="Pignata, Maria L" uniqKey="Pignata M" first="María L" last="Pignata">María L. Pignata</name>
<affiliation wicri:level="1">
<nlm:affiliation>Instituto Multidisciplinario de Biología Vegetal, Área Contaminación y Bioindicadores, Universidad Nacional de Córdoba, CONICET, FCEFyN, Av. Vélez Sársfield, 1611, X5016CGA, Córdoba, Argentina.</nlm:affiliation>
<country xml:lang="fr">Argentine</country>
<wicri:regionArea>Instituto Multidisciplinario de Biología Vegetal, Área Contaminación y Bioindicadores, Universidad Nacional de Córdoba, CONICET, FCEFyN, Av. Vélez Sársfield, 1611, X5016CGA, Córdoba</wicri:regionArea>
<wicri:noRegion>Córdoba</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rodriguez, Judith H" sort="Rodriguez, Judith H" uniqKey="Rodriguez J" first="Judith H" last="Rodriguez">Judith H. Rodriguez</name>
<affiliation wicri:level="1">
<nlm:affiliation>Instituto Multidisciplinario de Biología Vegetal, Área Contaminación y Bioindicadores, Universidad Nacional de Córdoba, CONICET, FCEFyN, Av. Vélez Sársfield, 1611, X5016CGA, Córdoba, Argentina.</nlm:affiliation>
<country xml:lang="fr">Argentine</country>
<wicri:regionArea>Instituto Multidisciplinario de Biología Vegetal, Área Contaminación y Bioindicadores, Universidad Nacional de Córdoba, CONICET, FCEFyN, Av. Vélez Sársfield, 1611, X5016CGA, Córdoba</wicri:regionArea>
<wicri:noRegion>Córdoba</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31927384</idno>
<idno type="pmid">31927384</idno>
<idno type="doi">10.1016/j.chemosphere.2020.125833</idno>
<idno type="wicri:Area/Main/Corpus">000248</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000248</idno>
<idno type="wicri:Area/Main/Curation">000248</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000248</idno>
<idno type="wicri:Area/Main/Exploration">000248</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Effects of co-cropping on soybean growth and stress response in lead-polluted soils.</title>
<author>
<name sortKey="Vergara Cid, Carolina" sort="Vergara Cid, Carolina" uniqKey="Vergara Cid C" first="Carolina" last="Vergara Cid">Carolina Vergara Cid</name>
<affiliation wicri:level="1">
<nlm:affiliation>Instituto Multidisciplinario de Biología Vegetal, Área Contaminación y Bioindicadores, Universidad Nacional de Córdoba, CONICET, FCEFyN, Av. Vélez Sársfield, 1611, X5016CGA, Córdoba, Argentina. Electronic address: cvergaracid@imbiv.unc.edu.ar.</nlm:affiliation>
<country xml:lang="fr">Argentine</country>
<wicri:regionArea>Instituto Multidisciplinario de Biología Vegetal, Área Contaminación y Bioindicadores, Universidad Nacional de Córdoba, CONICET, FCEFyN, Av. Vélez Sársfield, 1611, X5016CGA, Córdoba</wicri:regionArea>
<wicri:noRegion>Córdoba</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pignata, Maria L" sort="Pignata, Maria L" uniqKey="Pignata M" first="María L" last="Pignata">María L. Pignata</name>
<affiliation wicri:level="1">
<nlm:affiliation>Instituto Multidisciplinario de Biología Vegetal, Área Contaminación y Bioindicadores, Universidad Nacional de Córdoba, CONICET, FCEFyN, Av. Vélez Sársfield, 1611, X5016CGA, Córdoba, Argentina.</nlm:affiliation>
<country xml:lang="fr">Argentine</country>
<wicri:regionArea>Instituto Multidisciplinario de Biología Vegetal, Área Contaminación y Bioindicadores, Universidad Nacional de Córdoba, CONICET, FCEFyN, Av. Vélez Sársfield, 1611, X5016CGA, Córdoba</wicri:regionArea>
<wicri:noRegion>Córdoba</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rodriguez, Judith H" sort="Rodriguez, Judith H" uniqKey="Rodriguez J" first="Judith H" last="Rodriguez">Judith H. Rodriguez</name>
<affiliation wicri:level="1">
<nlm:affiliation>Instituto Multidisciplinario de Biología Vegetal, Área Contaminación y Bioindicadores, Universidad Nacional de Córdoba, CONICET, FCEFyN, Av. Vélez Sársfield, 1611, X5016CGA, Córdoba, Argentina.</nlm:affiliation>
<country xml:lang="fr">Argentine</country>
<wicri:regionArea>Instituto Multidisciplinario de Biología Vegetal, Área Contaminación y Bioindicadores, Universidad Nacional de Córdoba, CONICET, FCEFyN, Av. Vélez Sársfield, 1611, X5016CGA, Córdoba</wicri:regionArea>
<wicri:noRegion>Córdoba</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Chemosphere</title>
<idno type="eISSN">1879-1298</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Agriculture (methods)</term>
<term>Antioxidants (metabolism)</term>
<term>Biodegradation, Environmental (MeSH)</term>
<term>Biomass (MeSH)</term>
<term>Lead (analysis)</term>
<term>Lead (metabolism)</term>
<term>Plant Development (MeSH)</term>
<term>Rhizosphere (MeSH)</term>
<term>Soil (MeSH)</term>
<term>Soil Pollutants (analysis)</term>
<term>Soil Pollutants (metabolism)</term>
<term>Soybeans (metabolism)</term>
<term>Soybeans (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Agriculture (méthodes)</term>
<term>Antioxydants (métabolisme)</term>
<term>Biomasse (MeSH)</term>
<term>Dépollution biologique de l'environnement (MeSH)</term>
<term>Développement des plantes (MeSH)</term>
<term>Plomb (analyse)</term>
<term>Plomb (métabolisme)</term>
<term>Polluants du sol (analyse)</term>
<term>Polluants du sol (métabolisme)</term>
<term>Rhizosphère (MeSH)</term>
<term>Soja (métabolisme)</term>
<term>Soja (physiologie)</term>
<term>Sol (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Lead</term>
<term>Soil Pollutants</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Antioxidants</term>
<term>Lead</term>
<term>Soil Pollutants</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Plomb</term>
<term>Polluants du sol</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Soybeans</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Agriculture</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Antioxydants</term>
<term>Plomb</term>
<term>Polluants du sol</term>
<term>Soja</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Agriculture</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Soja</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Soybeans</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biodegradation, Environmental</term>
<term>Biomass</term>
<term>Plant Development</term>
<term>Rhizosphere</term>
<term>Soil</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Biomasse</term>
<term>Dépollution biologique de l'environnement</term>
<term>Développement des plantes</term>
<term>Rhizosphère</term>
<term>Sol</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Phytoremediation by co-cropping may be a promising approach to produce safe crops while remediating the soil. However, the effects of plant interaction, especially stress response, remain unclear. The aims of this study were to investigate the effect of co-cropping on plant growth, stress response and lead (Pb) uptake in soybean and Tagetes minuta, and to assess the feasibility of agricultural production in Pb-polluted soils. A pot experiment was conducted to study the effect of co-cropping vs monocrop at three soil Pb concentrations. The following parameters were analyzed: biomass, Pb content in plants, and stress response indicators (chlorophylls, proteins, sugars, malondialdehyde, glutathione S-transferase activity, carotenes and antioxidant power). Results showed that in co-cropping, both species were benefited in polluted soils, since biomass and stress response were improved. T. minuta reduced adverse effects of Pb on soybean by improving grain quality and even survival in polluted soils, where soybean in monocrop grew only up to early vegetative stages. This effect was related to a 50% reduction in lipid peroxidation for soybean in co-cropping along with a sharp increase in the antioxidant response. In addition, co-cropping enhanced Pb accumulation in T. minuta (45% higher), as well as content of chlorophylls and carotenes (66% and 42% of increment, respectively) and glutathione S-transferase activity (two times higher) in the highly polluted soil. Our results showed that rhizosphere interactions can help enhance tolerance to Pb toxicity in both species, allowing soybean production in highly polluted soils without posing health risk from grain consumption.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">31927384</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>04</Month>
<Day>16</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>16</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1879-1298</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>246</Volume>
<PubDate>
<Year>2020</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>Chemosphere</Title>
<ISOAbbreviation>Chemosphere</ISOAbbreviation>
</Journal>
<ArticleTitle>Effects of co-cropping on soybean growth and stress response in lead-polluted soils.</ArticleTitle>
<Pagination>
<MedlinePgn>125833</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S0045-6535(20)30024-2</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.chemosphere.2020.125833</ELocationID>
<Abstract>
<AbstractText>Phytoremediation by co-cropping may be a promising approach to produce safe crops while remediating the soil. However, the effects of plant interaction, especially stress response, remain unclear. The aims of this study were to investigate the effect of co-cropping on plant growth, stress response and lead (Pb) uptake in soybean and Tagetes minuta, and to assess the feasibility of agricultural production in Pb-polluted soils. A pot experiment was conducted to study the effect of co-cropping vs monocrop at three soil Pb concentrations. The following parameters were analyzed: biomass, Pb content in plants, and stress response indicators (chlorophylls, proteins, sugars, malondialdehyde, glutathione S-transferase activity, carotenes and antioxidant power). Results showed that in co-cropping, both species were benefited in polluted soils, since biomass and stress response were improved. T. minuta reduced adverse effects of Pb on soybean by improving grain quality and even survival in polluted soils, where soybean in monocrop grew only up to early vegetative stages. This effect was related to a 50% reduction in lipid peroxidation for soybean in co-cropping along with a sharp increase in the antioxidant response. In addition, co-cropping enhanced Pb accumulation in T. minuta (45% higher), as well as content of chlorophylls and carotenes (66% and 42% of increment, respectively) and glutathione S-transferase activity (two times higher) in the highly polluted soil. Our results showed that rhizosphere interactions can help enhance tolerance to Pb toxicity in both species, allowing soybean production in highly polluted soils without posing health risk from grain consumption.</AbstractText>
<CopyrightInformation>Copyright © 2020 Elsevier Ltd. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Vergara Cid</LastName>
<ForeName>Carolina</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Instituto Multidisciplinario de Biología Vegetal, Área Contaminación y Bioindicadores, Universidad Nacional de Córdoba, CONICET, FCEFyN, Av. Vélez Sársfield, 1611, X5016CGA, Córdoba, Argentina. Electronic address: cvergaracid@imbiv.unc.edu.ar.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pignata</LastName>
<ForeName>María L</ForeName>
<Initials>ML</Initials>
<AffiliationInfo>
<Affiliation>Instituto Multidisciplinario de Biología Vegetal, Área Contaminación y Bioindicadores, Universidad Nacional de Córdoba, CONICET, FCEFyN, Av. Vélez Sársfield, 1611, X5016CGA, Córdoba, Argentina.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rodriguez</LastName>
<ForeName>Judith H</ForeName>
<Initials>JH</Initials>
<AffiliationInfo>
<Affiliation>Instituto Multidisciplinario de Biología Vegetal, Área Contaminación y Bioindicadores, Universidad Nacional de Córdoba, CONICET, FCEFyN, Av. Vélez Sársfield, 1611, X5016CGA, Córdoba, Argentina.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>01</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Chemosphere</MedlineTA>
<NlmUniqueID>0320657</NlmUniqueID>
<ISSNLinking>0045-6535</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000975">Antioxidants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012989">Soil Pollutants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>2P299V784P</RegistryNumber>
<NameOfSubstance UI="D007854">Lead</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000383" MajorTopicYN="N">Agriculture</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000975" MajorTopicYN="N">Antioxidants</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001673" MajorTopicYN="Y">Biodegradation, Environmental</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018533" MajorTopicYN="N">Biomass</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007854" MajorTopicYN="N">Lead</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D063245" MajorTopicYN="N">Plant Development</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058441" MajorTopicYN="N">Rhizosphere</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012989" MajorTopicYN="N">Soil Pollutants</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013025" MajorTopicYN="N">Soybeans</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Co-cropping</Keyword>
<Keyword MajorTopicYN="N">Lead uptake</Keyword>
<Keyword MajorTopicYN="N">Phytoremediation</Keyword>
<Keyword MajorTopicYN="N">Soybean</Keyword>
<Keyword MajorTopicYN="N">Stress response</Keyword>
<Keyword MajorTopicYN="N">Tagetes minuta</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>11</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>12</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>01</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>1</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>4</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>1</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31927384</ArticleId>
<ArticleId IdType="pii">S0045-6535(20)30024-2</ArticleId>
<ArticleId IdType="doi">10.1016/j.chemosphere.2020.125833</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Argentine</li>
</country>
</list>
<tree>
<country name="Argentine">
<noRegion>
<name sortKey="Vergara Cid, Carolina" sort="Vergara Cid, Carolina" uniqKey="Vergara Cid C" first="Carolina" last="Vergara Cid">Carolina Vergara Cid</name>
</noRegion>
<name sortKey="Pignata, Maria L" sort="Pignata, Maria L" uniqKey="Pignata M" first="María L" last="Pignata">María L. Pignata</name>
<name sortKey="Rodriguez, Judith H" sort="Rodriguez, Judith H" uniqKey="Rodriguez J" first="Judith H" last="Rodriguez">Judith H. Rodriguez</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantGlutaTransV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000170 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000170 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantGlutaTransV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31927384
   |texte=   Effects of co-cropping on soybean growth and stress response in lead-polluted soils.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31927384" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantGlutaTransV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 15:50:29 2020. Site generation: Sat Nov 21 15:50:53 2020